转自:中国改革报
□ 易跃春 姜海 王宇霖
目前,中国已成为全球新能源的领军者,领先优势仍在持续攀升:2023年全球可再生能源新增装机中,中国贡献超过一半;2023年中国可再生能源总装机占比超过50%,风光总量继续保持主体地位。
同时,中国还是世界最大制氢国,氢能相关技术专利持有量位列全球第一。氢气作为二次能源,被业界誉为“21世纪终极清洁能源”,需要通过能量转化过程从煤、烃类和水等物质中提取。
电解水制氢将占主导地位
氢气制备途径多样,根据氢气制取过程中的碳排放量不同可以分为“灰氢”“蓝氢”“绿氢”。“灰氢”指通过煤炭、石油、天然气等化石能源的重整制氢,和以焦炉煤气、氯碱尾气、丙烷脱氢等为代表的工业副产氢,生产过程中释放大量的二氧化碳,但因技术成熟且成本较低,是当前主流制氢方式;“蓝氢”是在灰氢的基础上,将二氧化碳副产品捕获、利用和封存,减少生产过程中的碳排放,实现低碳制氢;“绿氢”是通过可再生能源(如风电、水电、太阳能)制氢、生物质制氢等方法制得的氢气,生产过程基本不会产生二氧化碳等温室气体,保证了绿氢的生产过程零排放。
根据国际能源署公开统计数据,2021年全球氢气产量约9400万吨/年,氢能产量主要来源于化石能源制氢,占比高达81%,其中天然气制氢占62%、煤制氢占19%;低碳排放制氢占比仅0.7%,电解水制氢的产量仅为3.5万吨,仅占0.04%。由于化石能源制氢可为行业引入低成本氢源,近10年天然气制氢占比较大,我国氢气年产量约为3300万吨,主要由化石能源制氢和工业副产氢构成,其中煤制氢占62%、天然气制氢占19%、工业副产氢占18%,与我国“富煤贫油少气”的能源特征相符,可再生能源制氢规模还处于起步阶段,占比很小。在双碳背景下清洁能源加快发展,电解水制氢将逐步占主导地位,未来全球氢气将逐步转化为利用可再生能源电解水制氢的方式进行供给。
可再生能源电解水制氢是最成熟路径
绿氢替代趋势正在逐渐显现。绿氢制取技术包括利用风电、水电、太阳能等可再生能源电解水制氢、太阳能光解水制氢及生物质制氢,其中可再生能源电解水制氢是应用最广、技术最成熟的方式。电解水制氢即通过电能将水分解为氢气与氧气的过程,该技术可以采用可再生能源电力,不会产生二氧化碳和其他有毒有害物质的排放,从而获得真正意义上的“绿氢”。电解水制氢技术主要包括碱性电解水、质子交换膜电解水、固体氧化物电解水以及其他电解水技术。
较之于其他制氢技术,碱性电解水制氢可以采用非贵金属催化剂,且电解槽具有15年左右的长使用寿命,因此具有成本上的优势和竞争力。碱性电解水制氢技术已有数十年的应用经验,在20世纪中期就实现了工业化,商业成熟度高,运行经验丰富,国内一些关键设备主要性能指标均接近于国际先进水平,单槽电解制氢量大,易适用于电网电解制氢。但是,该技术使用的电解质是强碱,具有腐蚀性且石棉隔膜不环保,具有一定的危害性。
和碱性电解水制氢技术相比,PEM电解水制氢技术具有电流密度大、氢气纯度高、响应速度快等优点,PEM电解水制氢技术工作效率更高,易于与可再生能源消纳相结合,是目前电解水制氢的理想方案。但是,由于PEM电解槽需要在强酸性和高氧化性的工作环境下运行,因此设备需要使用含贵金属(铂、铱)的电催化剂和特殊膜材料,导致成本过高,使用寿命也不如碱性电解水制氢技术。
目前,中国PEM电解槽发展和国外水平仍然存在一定差距,国内生产的PEM电解槽单槽最大制氢规模大约在260标方/小时,而国外生产的PEM电解槽单槽最大制氢规模可以达到500标方/小时。
合成氨是氢气最大消纳途径之一
合成氨作为全球第二大化学品,是现代社会中最为重要的化工产品之一。氨是制造硝酸、化肥的重要原料,氨对地球上的生物相当重要,它是所有食物和肥料的重要成分。也是所有药物直接或间接的组成。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,超过八成的氨被用于制作化肥。
合成氨是氢气是最大的消纳途径之一。合成氨是氢气和氮气在催化剂的作用下反应生成,以气态烃为原料的合成氨。国际上各公司采用的工艺方法有所不同,但基本生产过程没有发生大的改变,工艺流程基本相同。目前,国内所应用的工艺多数是从国外引进,其合成工艺的设计理念都是以提高氨净值和节能为最终目的。由绿氢与空气中分离的氮气生产的合成氨称为绿氨,绿氨全程以可再生能源为原料进行制备,可以真正做到可持续全程无碳。就合成原理与技术路线而论,绿氨合成与传统氨合成在工艺流程、关键设备、设计与操作指标上并无本质差别。
据介绍,采用可再生能源制备绿氢的方式合成氨,生产1吨氨理论上需要消耗0.18吨氢气,而制备绿氢的成本中电费和设备投资成本占比较大,目前的绿氨综合成本在3500元/吨左右,未来绿氨综合成本主要需要随着绿氢制备成本下降而进一步下降。绿氢制绿氨所面临的较大挑战,是需考虑可再生能源供给和市场需求的波动,开发充分考虑操作安全性和过程经济性的绿氢制氨工艺,实现冷热电互济,提升系统灵活性,提高综合转换效率。我国低压合成氨技术步入国际先进水平,已建成诸多大型合成氨基地,涌现了云天化、湖北宜化、华鲁恒升等一大批具有较高技术水平、较大生产规模的企业。
绿电制甲醇产业化问题待解
甲醇是氢应用的另一大途径之一。甲醇作为一种基本的有机化工原料,用途十分广泛。甲醇可以用于合成纤维、甲醛、塑料、医药、农药、染料、合成蛋白质等化工产品,也可以用作甲醇燃料电池(DMFC)和甲醇发动机的液体燃料。甲醇还可以通过裂解释放出氢气,从而成为氢气储运的载体。目前,绿色甲醇主要有两种生产途径:一种是生物质甲醇,利用生物基原料生产;另一是绿电制甲醇。
绿电制甲醇主要以二氧化碳为原料,其技术路线分为:绿电制绿氢耦合二氧化碳制甲醇;二氧化碳电催化还原制甲醇。目前,国内外对二氧化碳加氢制甲醇开展了大量的研究,重点包括催化剂制备和工艺路线设计。催化剂主要有铜基催化剂、钯基催化剂、铟基催化剂和氧化物固溶体催化剂等类型。其中,铜基催化剂因其制备简便、原料经济,已实现工业化且应用最为广泛。工艺路线主要根据不同的催化剂体系而发展,国内基于不同催化剂已形成多条工艺路线,并建成多个示范装置。
比如,中国科学院上海高等研究院和海洋石油富岛公司完成了5000吨/年的二氧化碳加氢制甲醇示范装置;中国科学院大连化学物理研究所在兰州新区绿色化工院建成千吨级液态太阳燃料合成示范工程,后续将继续开展10万吨级的液态阳光工业化示范项目;西南化工研究设计院有限公司与鲁西化工集团公司研发,并建设投产了5000吨/年的甲醇生产试验中试装置;国外冰岛碳循环国际公司(CRI)是将二氧化碳直接制甲醇过程商业化的领导者,在冰岛建成世界上第一座二氧化碳加氢制甲醇装置已实现商业运行,示范工厂甲醇产能4000吨/年,据称其具备5万~10万吨/年的技术推广能力。吉利自2005年开始研究甲醇汽车和甲醇发动机。目前,形成专利200余件,甲醇汽车累计销量超3万辆,最高里程数超120万公里,累计行驶近100亿公里。
绿色氢基能源空间很大
目前,二氧化碳加氢制甲醇技术路线已经打通,已实现中试示范,接下来还需对技术做进一步改进,解决产业化问题,行业将聚焦于开发低能耗、高稳定性的电解水催化剂,开发高活性、高选择性、高稳定性二氧化碳加氢制甲醇的催化剂等方面的技术。
随着技术的进步,光伏板、电解水槽等关键设备成本将逐步降低,催化剂的性能也进一步提升,绿色甲醇产业必将迎来更加广阔的发展前景。
绿色氢基能源的未来发展空间很大。氨与甲醇除了作为基础化工产品外,还可以作为新型燃料和氢气载体,可作为风电和太阳能等可再生能源就地消纳的有效解决方案。虽然当前绿氨和绿甲醇的生产成本高于传统合成氨和甲醇,但在“双碳”政策刺激及资金投入的推动下,绿色氢基能源制取技术将迅速发展成熟,绿氨和绿色甲醇的产量有望大幅增长,未来的发展前景将非常广阔,将有潜力成为未来替代传统化石能源的主要形式。(作者单位:水电水利规划设计总院)
VIP课程推荐
APP专享直播
热门推荐
收起24小时滚动播报最新的财经资讯和视频,更多粉丝福利扫描二维码关注(sinafinance)