新能源车的续航大战,打到了手机圈

新能源车的续航大战,打到了手机圈
2024年07月03日 18:06 创业邦

来源:创业邦

来源丨远川科技评论(ID:kechuangych)

作者丨何律衡

编辑丨李墨天

图源丨Midjourney

今年年初小米发布14 Ultra,介绍了一个多小时影像功能后,另一位主角“金沙江电池”姗姗来迟。

小米14 Ultra“超大杯”的相机模组比上一代整整大了20%,但整机重量轻了3g,并且续航提升了17%,幕后功臣就是“金沙江电池”[1]。

从vivo的“蓝海电池”、一加的“冰川电池”,到荣耀的“青海湖电池”、小米的“金沙江电池”,几大国产手机品牌,突然就和水杠上了。

这些名山大川背后,其实是从隔壁新能源车舶来的底层技术——硅碳电池。

手机厂商对着中国地形图取名字之前,特斯拉自产的2170/4680电池、宁德时代的麒麟电池都应用了硅碳电池方案。

在“洞庭湖电池”、“千岛湖电池”出现前,也许有必要搞清楚,硅碳电池到底是个什么技术,能让新能源车和消费电子两大产业,都对其趋之若鹜。

“越狱”的电子

在了解硅碳电池之前,首先要理解电池续航的原理。

无论手机还是汽车,电池充电的本质是电子的“越狱”:原子核带正电,电子带负电,双方数量相当,原子正负电量平衡。但在一定条件下(例如施加电压、电解),电子会脱离原子,产生电流。

电池的工作,可以简单理解为创造条件让电子脱离原子,流入设计好的电路中形成电流,为电子设备输送电力。决定一块电池续航多寡的,是两大部件——正极和负极。

正极是“关押”电子的“牢房”,一般是金属化合物。锂元素由于常年玩忽职守,让电子更容易逃脱,成为了大部分电池的选择,也就是我们常说的“锂电池”。

负极是电子的“安全屋”:电子越狱后沿着电路前往负极,在这个过程中,会产生电流给电子设备供电;此时,发现电子越狱的锂离子会火速通过电解液杀向负极,将电子擒拿归案,保持正负平衡。

电池的充电和放电,就是电子不断越狱,锂离子不断抓电子的无限循环。

电池续航的核心,一是扮演牢房的正极能够提供多少编制,容纳负责擒拿电子的锂;二是扮演安全屋的负极能够提供多少床位,收容在逃的电子。

过去几年,电池厂的技术投资多在正级材料上。可以理解为,在确定锂元素的主体地位后,选什么材料当辅警,配合锂离子抓电子。

“三元锂电池”就是正极采用三种锂元素化合物的电池。例如NCM811,就是镍(N)酸锂、钴(C)酸锂、锰(M)酸锂混合,811代表三个元素的摩尔配比。NCM522是另一种配比。

“磷酸铁锂电池”即正极材料为磷酸铁锂,虽然抓捕电子的能力不如三元锂电池,但胜在不需要稀有金属,便宜大碗。

过去十年,电池厂围绕正极,从“三元锂VS磷酸铁锂”打到“有钴VS无钴”、“低镍VS高镍”,能量密度不断提高,电动车的续航里程也从300km加码到700km以上。

但经过多年投资,正极材料的进步逐渐触碰了瓶颈,无法释放更多在编岗位。于是,电池厂纷纷把目光投向负极,研究安全屋的改造施工方案。

一直以来,碳元素是负极材料的主流选择,常用的石墨就是碳的旁支兄弟(同素异形体),另一个旁支兄弟我们更熟悉,就是钻石。

钻石(左)和石墨(右)差别在于碳原子的排布方式不同钻石(左)和石墨(右)差别在于碳原子的排布方式不同

面对续航提升的压力,工程师们翻开元素周期表,发现硅元素恰好位于碳的正下方,属于“同族兄弟”,意味着两者化学性质相似,都很适合做锂电子的“收容所”。

元素周期表上碳和硅同族元素周期表上碳和硅同族

因此,所谓“硅碳电池”,就是负极材料使用硅和碳两种元素的电池,但往碳里面掺多少硅,就是一门在成本与技术的镣铐里反复横跳的艺术了。

给负极加点料

2020年8月,特斯拉在官网官宣电池日时间,不甚清晰的背景图却吸引了更多注意。

媒体很快扒出,图中的那些“细线”本体是硅纳米线,是一种新型负极技术,本质是以硅取代碳作为负极材料,几年来在业内积累了不少声量。

马斯克很早就意识到,以碳为主要材料的负极,会成为阻碍能量密度升级的一道天堑。因此,特斯拉早早就打起了负极的主意。

2015年推出Model S时,特斯拉就给其中一款配备了“狂暴模式”,声称加速到100公里时速只需要2.8秒。而这款动力更强的车型,续航里程反而比其他车型提高了6%。马斯克在推特上暗戳戳炫耀,自己给电池负极加了点“佐料”——这个“佐料”就是硅。

相比碳元素,硅元素的优势在于空间更大,方便锂离子把电子一网打尽:

6个碳原子能容纳1个锂离子,而1个硅原子就能容纳4个锂离子。理论上,硅材料“收容”锂离子的能力,是碳材料的10倍以上[3],是替代石墨材料的不二之选。

单纯从材料看,直接用硅代替碳作为电池负极,就能带来续航的爆炸式提升。

但硅有一个致命弱点——充放电过程中体积膨胀非常严重,锂离子进入时膨胀,膨胀率最高达300%(碳的膨胀率只有16%)[4],锂离子离开后又收缩,一膨一缩之间,材料就会破碎和粉化。在实际使用中,会导致电池衰减速度极快,充电循环次数极低。

经过多次充放电循环后的硅负极经过多次充放电循环后的硅负极

按照国际标准,动力电池必须要能够循环1000次以上,这就把纯硅负极的路暂时封死了。

特斯拉的解决办法是博采众长,在石墨负极中掺入少量硅,既能提高续航,又能保证循环次数。Model S采用的松下2170电池负极,就掺了5%的硅。

材料学家们则沿着另一条路径突破——改变硅原子的呈现形态:

因为粒子越小,越不容易破碎,那么把硅材料做到几十纳米的尺寸(碳材料一般是几百纳米甚至微米),就能完美规避硅的化学弱点。这就是特斯拉2020年电池日介绍的极其激进的技术路线——“硅纳米线”。

按照特斯拉的思路,可以将硅材料的尺寸做到10nm的程度,外部以二氧化硅包覆,100%的硅材料[3],不含一滴碳,童叟无欺。

但四年过去,“硅纳米线”依然静静地躺在马斯克的大饼军团了。可能是因为马斯克的大饼画的实在太多,以至于大家都忘了还有这一张饼。

特斯拉的技术研发思路一直是“物理课本上没说不行啊”。相比砸下几十亿美元挑战物理学的法则,大部分电池厂还是会选择更加“务实”的路线——在碳负极里掺点硅,这才有了硅碳电池套着五花八门的山川湖海集体出道。

只不过在新能源车的应用中,会碰到一个成本问题:一方面,现有电池技术配合快充桩,续航基本够用;另一方面,即便要提高续航,相比硅碳负极这种提高“单位能量密度”的方法,装个更大的电池包可能是更划算的方案。

但对寸土寸金的手机来说,负极掺硅已经迫在眉睫了。

高端手机不做选择

2015年,中国智能手机出货量首次跌破10%[5],高速增长期结束,存量博弈时代开始。

此后,“堆料”成为了智能手机迭代的主线,各大手机品牌在摄像头、处理器等硬件升级上不惜血本,高端产品线作为“堆料”的集大成者,硝烟弥漫。但对手机体验影响最大的,其实是电池。

PhoneArena在2015年做的一项调查结果显示,64%的消费者最关心的手机功能改进是续航能力[6]。

相比新能源车,手机厂商对硅碳电池的追捧有一个重要原因:手机内部的空间实在太宝贵了。

过去几年,伴随三摄、面部识别等功能的普及,手机内部镜头模组和人脸识别模块的面积迅速增加,侵蚀了本就不富裕的内部空间。iPhone15 Pro的电池容量反而比iPhone 15低,就是因为多出一个摄像头,让电池不得不为镜头模组的扩大而妥协。

手机无法像电动车一样,塞进更大的电池包,因此能够提高“单位能量密度”的硅碳电池,就进入了手机厂商的视野。

小米11 Pro里的相机模块和电池小米11 Pro里的相机模块和电池

2019年,小米在概念机MIX Alpha上首次采用了纳米硅电池。由于MIX Alpha的环绕屏设计过于吸引人,导致大家都没太注意纳米硅电池这个相当激进的技术方案。

两年后的小米11 Ultra,小米用硅氧化合物代替纳米硅掺入负极,把硅碳电池第一次带入量产机型。虽然硅氧化合物能量密度提升效果不如纳米硅,但胜在循环次数多,成本相对可控。

因为硅碳负极的贡献,小米11 Ultra进入“5000mAh俱乐部”。同时,电池模组的体积几乎不变,机身厚度也保持在8.38mm的舒适区。

从此之后,硅碳负极成为了各家高端产品线的标配。而折叠屏手机的出现,又给硅碳电池添了一把火。

屏幕是手机里最耗电的零部件,大部分“大折叠”手机,本质上把屏幕面积扩大了三倍,成为实打实的“吞电兽”。三星Z Fold 3就被吐槽“睡前满格、起床3%”;另一方面,由于“折叠”的形态,整机对于轻薄的要求更高,对电池的单位能量密度要求更高。

“极限堆料”的高端手机,加上“既要又要”的折叠屏,把手机续航带到了6000mAh的新高度。相比之下,容量只有3349mAh的iPhone 15,多少就有些尴尬了。

几年前接受采访,苹果高管Greg Joswiak曾发表过“iOS+3000mAh > 5000mAh”的迷惑言论。现在去隔壁的特斯拉取取经,兴许还来得及。

参考资料

[1] 小米14 Ultra重磅发布|专业影像旗舰,让真实有层次,雷军

[2] 特斯拉剧透的硅纳米线电池负极材,有何看点?华宝证券

[3] 产品介绍,Amprius官网

[4] 克服“膨胀”,硅碳负极电池小身板有大能量,科普时报

[5] 2015年中国智能手机全年报告,Strategy Analytics

[6] Going into 2016, battery life is still the number one concern with our readers, Phone Arena

电池手机圈
新浪科技公众号
新浪科技公众号

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)

创事记

科学探索

科学大家

苹果汇

众测

专题

官方微博

新浪科技 新浪数码 新浪手机 科学探索 苹果汇 新浪众测

公众号

新浪科技

新浪科技为你带来最新鲜的科技资讯

苹果汇

苹果汇为你带来最新鲜的苹果产品新闻

新浪众测

新酷产品第一时间免费试玩

新浪探索

提供最新的科学家新闻,精彩的震撼图片