科学研究,特别是生命科学研究正在走向新的阶段。


有趣的是,这样的调节作用不是“一对一”的,是“多对多”的。按照诺奖委员会的发文,一个miRNA可以调节多个不同基因的表达,一个基因可以被多个miRNA调节,从而协调和微调整个基因网络。另有研究显示,单个miRNA可以调控的基因数量甚至可以超过100个。近年来针对哺乳动物miRNA-mRNA调控网络的研究发现,miRNA和mRNA网络的平衡对健康至关重要,一旦平衡被打破,就可能导致肿瘤、阿尔茨海默病等疾病的发生,还与人类器官衰老有关。研究者认为,人为控制miRNA的量使其与mRNA平衡,是治疗疾病的新路径。现在已经发现并有记录的人类基因编码的miRNA就有1917种,这背后是一个非常庞大的调节网络。“一些难治疾病,更可能从这类药物中获益。”郑维义告诉虎嗅,许多罕见遗传病涉及特定基因表达异常,miRNA药物通过直接调控这些基因或其下游通路,具有高度特异性。总体来说,miRNA 药物由于能够广泛调控多个基因、通路以及其更加精准的靶向性,在一些复杂的、多因素导致的疾病中展现了独特的治疗优势。这种多途径调节的能力使得miRNA在目前难以治疗的疾病领域(如癌症、神经系统疾病)具有巨大的应用前景。除了药物,研究者们也在尝试将miRNA用于肿瘤早筛等疾病预防领域;基于植物miRNA可以进入人体细胞参与调节基因的理论,甚至有不少中医药研究者在试图用miRNA,来解开中药调节人体机能的奥秘。正如诺奖委员会官网所说,miRNAs的开创性发现出乎意料,并揭示了基因调控的新维度。在其背后,生命科学,乃至整个科学界,都在向更加复杂的方向发展。向难治疾病发起挑战在生命科学领域,除了AI这样有力的工具,方向也非常重要。miRNA似乎是一个很好的突破口。它“多对多”的、令诺奖委员会都感到“惊讶”的基因调节机制,可将疾病治疗提升到了新的高度。“这种多重通路的基因调控,称得上是疾病治疗的终极手段了。”郑维义告诉虎嗅。从这个意义上讲,诺奖也算是在为彻底攻克难治疾病,向生命科学界吹响集结号了。人类对抗疾病的能力在过去几十年里快速达到一个又一个的巅峰,平均寿命翻倍了,但是瓶颈也在显现——全球已有药品超过20万种,但是仍然有超过10000种疾病,约占所有疾病的90%以上,没有有效的治疗方法。除了罕见病,还有3000多种常见病。随着老龄化问题的加深,越来越高发的阿尔茨海默病、帕金森病等神经系统相关疾病,心脑血管等退行性疾病,糖尿病等代谢类疾病,类风湿性关节炎、肿瘤等与免疫相关疾病,都成了令全球各国头疼的顽疾。数据显示,全球范围内,仅心脑血管疾病每年就会导致1700多万人死亡;在美国,糖尿病早在2003年每年消耗的医疗费用就超过了千亿美元。这些疾病的发病机制,已经无法用单一靶点解释。同时,应用传统新药研发方式,成功率也降到了2%以下。这一切都指向,生命科学研究,需要有更高效的解决方案出炉。miRNA的“同族兄弟”siRNA、ASO(反义寡核苷酸,为人工设计的小核酸)等,都已经有至少20种药物获批了。这些药物在很多难治疾病领域实现了零的突破,比如前两年因为“灵魂砍价”而声名大噪的诺西那生钠,就是ASO药物,它是全球首个SMA(脊髓性肌萎缩症,一种神经肌肉病)治疗药物。相比之下,miRNA凭借多目标调节的优势,被认为更具潜力。如前所述,miRNA不仅与单基因相关的罕见病有关,也与复杂难治的常见病有关,也有调节衰老的作用,有望延长人类的健康生存寿命。
来自:诺奖委员会官网全球miRNA进入临床的在研项目也有十几种,覆盖癌症、心脏病、干眼症、亨廷顿病、NASH等疾病。在中国,晶泰科技、米然生物、觅瑞集团等,也在药物、疾病诊断等方面有所布局。不过,miRNA到目前为止还没有一款药物获批,此前还曾有进入二期临床的项目宣布终止或暂停。“miRNA对序列的匹配要求不高,不需要像siRNA那样完全与目标基因匹配,有同时抑制多个靶基因的可能,但是脱靶风险也会增加。”悦康科创小核酸新药发现主管杨硕告诉虎嗅。这意味着,相关药品可能会有更多副作用。此外,“miRNA的修饰技术也是个问题,目前对这块儿的研究不多。”他说。小核酸分子虽然可以在细胞内部做很多事情,但是它本身非常脆弱。有研究显示,未经修饰的小核酸分子,最多10分钟就会被血液核酸酶降解干净,还面临免疫系统的攻击。除了用上递送系统这个“宇宙飞船”,给小核酸分子做修饰,就相当于给它们穿上“隐身衣”。这一策略在新冠mRNA疫苗中已经验证了,美国科学家卡塔林·卡里科和德鲁·魏斯曼还因其在mRNA修饰方面的贡献,获得了去年的诺贝尔生理学或医学奖。杨硕认为,miRNA领域研究迟迟没有突破,也与当前研究动力不足有关。“主要是siRNA目前的抑制效率已经很高了,大家可能没有动力去研究miRNA。”虽然不像mRNA疫苗那样家喻户晓,siRNA也是小核酸药物领域的“当红炸子鸡”。据统计,小核酸药物总市场规模在2022年就已有约38亿美元,预计今年可以达到82亿美元。其中,siRNA在2018年到2023年短短6年间市场规模增长了132倍以上,预计2024年可达30亿美元。而miRNA的开发前景和商业化前景还不清晰,确实难有竞争力。在诺奖频繁爆冷背后,科学界低垂的果实已被采摘,单靠人力再难有新的突破,范式革命呼之欲出。比如,在生命科学领域,抗体药的研发,从针对单一靶点的单抗药,正在向针对多靶点的双抗、三抗、四抗药物渗透,甚至展现出了比单抗更好的治疗潜力。不过,这也使药物研发难度呈几何级升高,催生了AI+制药技术的快速发展。可以看到,继赛诺菲宣布“All-in-AI”后,阿斯利康、礼来、强生都在积极与AI公司合作。AI对分子的预测也从单纯的蛋白质结构的预测,发展到了对蛋白质与核酸等小分子组成的复合体结构的预测,进而实现对miRNA等化合物结构的预测、筛选。这一次,前瞻性的诺奖把“冷落”多年的miRNA,重新推到了全球研究者、企业家、投资者的面前,也是在向业界发出“英雄帖”——能够通过修复基因来达到治愈疾病甚至人类延长健康寿命者,将是新的药物研发模式的开创者,也将是抢占未来先机的真正赢家。

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)
