不断改进OBC设计,适应更高的功率等级和电压

不断改进OBC设计,适应更高的功率等级和电压
2024年08月06日 11:06 电子产品世界

本文引用地址:

消费者需求不断攀升,电动汽车 (EV) 必须延长续航里程,方可与传统的内燃机 (ICE) 汽车相媲美。解决这个问题主要有两种方法:在不显著增加电池尺寸或重量的情况下提升电池容量,或提高主驱逆变器等关键高功率器件的运行能效。

为应对电子元件导通损耗和开关损耗造成的巨大功率损耗,汽车制造商正在通过提高电池电压来增加车辆的续航里程。

图1 生产中的电动汽车以及所需的复杂系统图1 生产中的电动汽车以及所需的复杂系统

由此,800 V 电池架构越来越普及,并可能最终取代目前的 400 V 技术。然而,电池容量越大,所需的充电时间就越长,这正是车主的另一个顾虑,意味着若在抵达目的地前需中途充电,将要等待很长时间。

因此,就像需要提高电池电压一样,汽车整车厂商也必须跟上电动汽车车载充电器 (OBC) 的发展步伐,而首先要考虑的是必须支持 800 V 电池架构和处理更高的电压。为此,现行的标准 650 V 额定芯片元件需过渡到额定电压最高达 1200 V 的芯片元件。此外,为加快电池充电速率,对更高额定功率 OBC 的需求也在日益增长。

消费者迫切需要更出色的性能

OBC 能够将交流电转换为直流电,因而可以让汽车利用电网等交流电源进行充电。充电站的输出峰值会明显限制充电速度,同样的,OBC 的峰值功率处理能力也是充电速度的一大影响因素。

在目前的充电基础设施中,充电桩分为三个等级:

●   1级的最大功率为 3.6 kW

●   2级的功率为 3.6 kW 到大约 22 kW ,与 OBC 的最大容量相当

●   3级提供直流电,无需使用 OBC,功率为 50 kW 到 350+ kW

尽管速度较快的 3 级直流充电站已投入使用,但其在全球范围内分布有限,因此 OBC 仍然不可或缺。此外,许多企业正尽可能提高现有 2 级充电基础设施的性能并促进更高电压电池技术的采用,市场对更高能效 OBC 的需求预计仍将持续增长。

表1 OBC的不同功率等级及其对80kWh电池充电时间的影响

表1列举了常见的 OBC 功率等级及大致充电时间。为加快充电速度、满足消费者需求,行业已开始转向更强大的三相 OBC。然而,电动汽车的实际充电时间取决于多个因素。

首先我们需要明确一点,充电并不是一个线性过程。当电池接近满容量(通常超过 80%)时,充电速度会减慢,以保护电池健康。简单来说,电池电量越满,接受电能的速度就越慢。电动汽车通常不是满电状态,许多电动汽车制造商通常也不建议频繁待电量耗至 0% 再充满至 100%,而是只需充一部分(例如最高充到 80%),这样可显著缩短充电时间。此外,电气化趋势正逐渐延伸到公共汽车、货车、重型车辆和农业用车等各种车辆类型甚至是船舶,OBC 还将继续发展,目标是实现 22 kW 以上更高功率等级。

汽车整车厂商可以通过构建更强大的 OBC 来提高 2 级充电站的充电速度,但这需要利用经济高效且性能可靠的电子元件,来实现更高的电压(800 V,而非 400 V)和更高的功率等级。

对于更高性能的 OBC,除了额定功率和电池电压之外,还有许多因素需要考虑。其中包括散热管理、封装限制、器件成本、电磁兼容性 (EMC) 以及对双向充电的潜在需求。

谈到散热管理,很容易想到增加 OBC 的尺寸和重量。然而,这种简单的方案并不理想,因为电动汽车的空间有限,难以容纳过于庞大 OBC,而且重量增加也会导致缩短车辆的续航里程。

800 V 电池架构可以带来诸多益处,例如减少导通损耗、提高性能、加快充电和电力输送速度等,但也为设计师带来了许多复杂难题:

●   器件供应:寻找适合 800 V 安全运转的器件可能会很困难。

●   降额以确保可靠性:即使是合格的器件也可能需要降额,也就是以低于最大容量的功率运转,以确保长期可靠性。

●   安全问题:更高电压的系统需要强大的绝缘和安全功能。

●   测试和验证:验证高电压系统更为复杂,可能需要专门的设备和专业知识。

为此,需要用到击穿电压更高的元件,对于 MOSFET 而言尤其如此。事实证明,在需要更快 MOSFET 开关的更高电压应用(例如 OBC)中,改用高性能碳化硅 (SiC) 元件将大有裨益。开发 PCB 布局时,考虑电压等级也至关重要,因为可能需要相应地扩大元件间距和 PCB 走线之间的距离。同样,暴露于更高电压的其他器件(例如连接器、变压器、电容)也需要更高的额定值。

改进OBC设计,提升性能和功能

安森美 (onsemi) 是一家值得信赖的高功率汽车应用功率模块供应商,可以为向 800 V 电池系统过渡提供强大支持。安森美先进的 EliteSiC 1200 V MOSFET 和汽车功率模块 (APM) 能够实现更高的功率密度,在汽车设计领域一直深受认可。

图2 EliteSiC 1200V MOSFET采用TO247-4L封装,提供开尔文源极连接(第 3 根引线),可消除栅极驱动环路内共源极寄生电感的影响

APM32功率模块系列集成安森美先进的 1200 V SiC 器件,针对 800 V 电池架构进行了优化,更适用于高电压和功率级 OBC。APM32 系列包括用于功率因数校正 (PFC) 级的三相桥模块,例如采用 1200 V 40 mΩ EliteSiC MOSFET(集成温度感测)的 NVXK2VR40WDT2。该模块专为 11 – 22 kW OBC 终端应用而设计。

相较于分立方案,APM32 模块技术具有多种优势,包括尺寸更小、散热设计更佳、杂散电感更低、内部键合电阻更低、电流能力更强、EMC 性能更好、可靠性更高等,从而有助于创建高性能双向 OBC(图 3)。这不仅能够增强车辆 OBC 的功能,还能让电动汽车充当移动的电池储能器。

图3 采用 EliteSiC 1200V APM32功率模块的高功率(11 kW-22 kW)双向OBC方案
图3 采用 EliteSiC 1200V APM32功率模块的高功率(11 kW-22 kW)双向OBC方案

图3的OBC功率级示例中包含升压型三相 PFC 和双向 CLLC 全桥转换器,用于提供必要的功率和电压处理及先进的双向充电功能。

在全球各地逐渐转向太阳能和风能等可持续能源之际,电网的电力供应有时可能供不应求。充满电的电动汽车能够作为重要的储能资源,用来支援电网的峰值需求,或者在建筑物主要电源受损的紧急情况下使用。利用安森美 APM32 等模块,OBC 可以实现电动汽车电池的双向能量传输。由此,电池存储的能量可以短暂地为房屋供电,之后还能随时充电。

可靠的设计和供应

与一些将封装技术外包的竞争对手不同,安森美的 APM 系列均在内部设计和制造,因而能够更好地掌控散热优化。此外,安森美为制造商提供了一系列封装和制造选项,包括裸片、分立元件或模块,从而确保有合适的方案支持任何先进的 OBC 设计。

结论

OBC 技术正蓬勃发展,不仅能帮助汽车制造商满足消费者对电动汽车的需求,还能有效应对 800 V 电池架构等新技术趋势。利用安森美系统方案(例如 APM32 功率模块),汽车设计人员可以简化流程并有效满足新需求,从而在大量减少设计工作的同时,确保更高的质量、可靠性和供应链一致性。

此外,安森美还提供广泛的技术支持、仿真及其他电源方案,其中包含 EliteSiC 1200 V M1 和 M3S MOSFET、EliteSiC 1200V D1 和 D3 二极管,以及电隔离栅极驱动器、CAN 收发器和可复位保险丝等配套器件,旨在助力实现全面、高性能的 OBC 设计。

电动汽车
新浪科技公众号
新浪科技公众号

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)

创事记

科学探索

科学大家

苹果汇

众测

专题

官方微博

新浪科技 新浪数码 新浪手机 科学探索 苹果汇 新浪众测

公众号

新浪科技

新浪科技为你带来最新鲜的科技资讯

苹果汇

苹果汇为你带来最新鲜的苹果产品新闻

新浪众测

新酷产品第一时间免费试玩

新浪探索

提供最新的科学家新闻,精彩的震撼图片