黄仁勋:英伟达AI芯片性能增速远超摩尔定律设定的标准

黄仁勋:英伟达AI芯片性能增速远超摩尔定律设定的标准
2025年01月08日 15:35 飞象网

在拉斯维加斯举行的国际消费电子展 (CES) 上,英伟达 CEO 黄仁勋在一次面向万人的主题演讲后接受 TechCrunch 采访时表示,其公司 AI 芯片的性能提升速度已远超数十年来推动计算机技术进步的“摩尔定律”设定的标准。

“我们的系统进步速度远超摩尔定律,”黄仁勋周二表示。

据了解,“摩尔定律”由英特尔联合创始人戈登 摩尔于 1965 年提出,预测计算机芯片上的晶体管数量将大约每年翻一番,从而使芯片性能也大致翻一番。这一预测基本实现了,并在几十年里推动了计算机性能的快速提升和成本的急剧下降。

近年来,“摩尔定律”的发展速度有所放缓。然而,黄仁勋声称,英伟达的 AI 芯片正以自身的加速节奏发展;该公司表示,其最新的数据中心超级芯片在运行 AI 推理工作负载方面的速度比上一代产品快 30 多倍。

“我们可以同时构建架构、芯片、系统、库和算法,”黄仁勋说,“如果这样做,我们就能比摩尔定律更快地发展,因为我们可以在整个技术栈中进行创新。”

英伟达 CEO 发表这一大胆言论之际,正值许多人质疑 AI 发展是否停滞之时。包括谷歌、OpenAI 和 Anthropic 在内的领先 AI 实验室都使用英伟达的 AI 芯片来训练和运行其 AI 模型,而这些芯片的进步可能会转化为 AI 模型能力的进一步提升。

这并非黄仁勋首次暗示英伟达正在超越“摩尔定律”。早在去年 11 月的一次播客节目中,黄仁勋就曾提出 AI 世界正以“超摩尔定律”的速度发展。

黄仁勋还驳斥了“AI 进展放缓”的观点。他认为,当前 AI 领域存在三大扩展定律:预训练(pre-training)、后训练(post-training)和推理时计算(test-time compute)。预训练阶段,AI 模型从海量数据中学习模式;后训练阶段,通过人类反馈等方法微调模型;推理时计算则让模型在回答每个问题后有更多时间“思考”。黄仁勋强调,随着计算能力的提升,AI 推理成本将逐步降低,类似于摩尔定律推动计算成本下降的历史进程。

英伟达的 H100 芯片曾是科技公司训练 AI 模型的首选,但现在科技公司更加关注推理,一些人开始质疑英伟达昂贵的芯片是否还能保持领先地位。

目前,使用测试时计算的 AI 模型运行成本高昂。有人担心 OpenAI 的 o3 模型(使用了规模化的测试时计算)对大多数人来说过于昂贵。例如,OpenAI 使用 o3 在一项通用智能测试中达到人类水平的分数,每项任务花费近 20 美元。而 ChatGPT Plus 的订阅费用为每月 20 美元。

在周一的主题演讲中,黄仁勋像举着盾牌一样展示了英伟达最新的数据中心超级芯片 GB200 NVL72。这款芯片在运行 AI 推理工作负载方面的速度比英伟达之前最畅销的芯片 H100 快 30 到 40 倍。黄仁勋表示,这种性能的飞跃意味着像 OpenAI 的 o3 这样在推理阶段使用大量计算的 AI 推理模型,其成本将随着时间的推移而降低。

黄仁勋表示,他总体上专注于创造性能更强的芯片,而性能更强的芯片从长远来看会带来更低的价格。“无论是在性能还是成本承受能力方面,测试时计算的直接解决方案是提高我们的计算能力,”黄仁勋表示。他指出,从长远来看,AI 推理模型可以用于为 AI 模型的预训练和后训练创建更好的数据。

在过去一年里,我们确实看到了 AI 模型的价格大幅下降,部分原因是英伟达等硬件公司的计算技术突破。黄仁勋表示,他预计这种趋势将随着 AI 推理模型的发展而继续下去。

黄仁勋声称他今天的 AI 芯片比 10 年前的产品好 1000 倍。这是一个比“摩尔定律”设定的标准快得多的速度,黄仁勋表示他认为这种速度没有停止的迹象。

新浪科技公众号
新浪科技公众号

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)

创事记

科学探索

科学大家

苹果汇

众测

专题

官方微博

新浪科技 新浪数码 新浪手机 科学探索 苹果汇 新浪众测

公众号

新浪科技

新浪科技为你带来最新鲜的科技资讯

苹果汇

苹果汇为你带来最新鲜的苹果产品新闻

新浪众测

新酷产品第一时间免费试玩

新浪探索

提供最新的科学家新闻,精彩的震撼图片