功率器件热设计基础(六)——瞬态热测量

功率器件热设计基础(六)——瞬态热测量
2024年12月03日 15:06 电子产品世界

/ 前言 /

本文引用地址:

功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。

功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。

确定热阻抗曲线

测量原理——R th /Z th 基础:

IEC 60747-9即GB/T 29332半导体器件分立器件第9部分:绝缘栅双极晶体管(IGBT)(等同采用)中描述了测量的基本原理。确定热阻抗的方法如图1所示。恒定功率P 由加载的电流产生,并达到稳定结温T 。关闭加载电流,记录器件的降温过程。

热阻R th(x-y) 是两个温度T x0 和T y0 在t=0时(达到热平衡,结温稳定时)的差值除以P 

热模型升温和降温是对称的,关断时刻的温度减去降温曲线就是升温曲线,而关断时刻的起始温度T J0 精确获得是关键。热模型升温和降温是对称的,关断时刻的温度减去降温曲线就是升温曲线,而关断时刻的起始温度T J0 精确获得是关键。

实际计算随时间变化的热阻抗Z th(x-y) (t),记录的温度曲线需要垂直镜像,并移动到坐标系的原点。然后将T (t)和T (t)的差值除以P 求得Z th(x-y) (t)。

图一:热阻抗测量方法图一:热阻抗测量方法

为了确定冷却阶段的结温,模块将施加一个测量小电流(I ref 约为1/1000 Inom),并记录由此产生的IGBT的饱和压降或二极管的正向电压。结温T j(t) 可借助标定曲线从测量的饱和压降或正向电压中确定T =f(V CE /V @I ref )。其反函数曲线V CE /V =f(T @I ref ) (见图二)是通过外部均匀加热被测模块的方式提前定标记录下来的。

图二:标定曲线示例,通过测量规定测量电流下的饱和电压来确定结温图二:标定曲线示例,通过测量规定测量电流下的饱和电压来确定结温
图三:3.3kV 140x190mm²模块外壳温度T c 和散热器温度T h 以及传感器位置示例图三:3.3kV 140x190mm²模块外壳温度T 和散热器温度T 以及传感器位置示例

外壳温度T 和散热器温度T 是通过热电偶测定的。这是它们分别与模块底板和散热器接触的位置(见图三,左侧)。在这两种情况下,热电偶投影轴心位于每块芯片的中心(见图三,右侧)。

th /Z th 测量的挑战和优化

模块的瞬态热阻最小为1毫秒,单管是1us,而且给出单脉冲和不同占空比下的值,这如何测量的呢?

在冷却阶段开始时,就需要精确测量以确定准确的T 和T 。需要指出的是,关断后,由于小的时间常数,很短的时间会导致T vj 发生很大变化,因此这是一个非常重要的测量时间段。另一方面,此时也会出现振荡,给测量带来很大困难,见图四。小于某个截止时间t cut 的所有时间点上的数据不可以用,但在此时间间隔内的温度变化ΔT (t cut )又很重要,好在对于短时间t,在∆T (t)和时间t的平方根存在几乎线性的关系,可以用于推算出T J0 ,见图五。

图四:降温曲线 4)图四:降温曲线 4)

因为,对于均质材料的"半无限"散热器板(即表面积无限大的板--确保垂直于表面的一维热流--厚度无限大),其表面以恒定的功率密度P /A加热,当加热功率开启/关闭时,表面温度随加热/冷却时间的平方根线性上升/下降。

c、ρ和λ别是板材料的比热、密度和导热系数。

图五:确定初始结温T J0 =T J (t=0 ) 4 )
图五:确定初始结温T J0 =T (t=0 

英飞凌应用指南AN2015-10提到了目前正在使用一种改进的测量系统(见图六)。

图六:优化的模拟/数字测量设备图六:优化的模拟/数字测量设备

随着技术和产品的进步,英飞凌重新制定了R th /Z th 测量方法和仿真方法。通过使用新的测量设备,现在可以更精确地确定IGBT模块的R th /Z th 值 3) 

图七对此进行了简化描述。与以前的测量系统"A"相比,修改后的测量系统"B"在 t =0时T 和T 之间的差值更大。如图一所示,这一温差与热阻R th 成正比,同时也会影响热阻抗Z th 。

图七:比较原测量系统(A)与改进后的测量系统(B)图七:比较原测量系统(A)与改进后的测量系统(B)

热阻抗与温度有关

由于模块的热力学行为,外壳和散热器之间的热阻抗(Z thCH 和Z thJH )与温度有关。模块经过优化,可最高效地把热传导至散热器,以适应半导体使用的典型高工作温度。因此,数据手册条件仅反映高温运行工况,如果模块在较低的外壳温度下运行,用户应自行测量特定热阻抗,可能会显著增加。

小结

1

瞬态热阻一般是用降温曲线测得的,这样,温度敏感参数(TSP)就不会受到加热电压或加热电流的干扰,在测量过程中也无需控制加热功率。虽然不推荐使用加热曲线,但如果在加热脉冲时间内加热功率P 恒定,且能保证不与芯片上的独立TSP器件发生电气串扰,则原则上也可使用加热曲线 4) 

2

数据手册中的Z thCH 和Z thJH ,是高温下的值,在器件壳温低时候,需要考虑数值是否变大 3) 

3

额外的收获是,通过公式1,可以计算出芯片的有效面积 4) ,由于芯片有效面积是知道的,可以用来验证测试值。

关键词: 英飞凌 功率器件 瞬态热测量
新浪科技公众号
新浪科技公众号

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)

创事记

科学探索

科学大家

苹果汇

众测

专题

官方微博

新浪科技 新浪数码 新浪手机 科学探索 苹果汇 新浪众测

公众号

新浪科技

新浪科技为你带来最新鲜的科技资讯

苹果汇

苹果汇为你带来最新鲜的苹果产品新闻

新浪众测

新酷产品第一时间免费试玩

新浪探索

提供最新的科学家新闻,精彩的震撼图片