小细节,大数据
文/Vin Malhotra, Sudhir Jain and Rahul Kumar
编译/章飚
大数据的概念早已风靡全球,怎么应用、怎么落地也都是众说纷纭,好不热闹。单就银行来说,利用大数据来对客户的情绪进行分析,然后对客户可能的购买意向进行预测,是当前可以从大数据浪潮的诱人前景里淘到的真金。
大数据概念的兴起似乎还是昨天的事,但托这个高速发展时代的福,我们已经可以看到很多成熟的大数据应用工具了。在很短的时间内,我们就能在茫茫的数据海洋中精确定位、分析,并拿到自己想要的结果。当然,这些技术的进步并非由银行推动,大型零售商、网上商城和各种门类的技术公司才是大数据的主导者,只不过,经过他们的探索之后,大数据也为银行打开了一扇精确营销的大门。从长远来看,银行如能充分利用大数据的优势,可以在市场细分、客户服务、客户研究、产品研发、产品测试等等方面取得重大进步,并在某种程度上彻底改变银行服务客户、销售产品的方式和渠道。
当然,这一切的前提是银行能找对切入大数据时代的方法和工具。对于银行来说,以正确的数量模型和分析方式来契合银行目前的业务需求,是合理利用大数据,达成更多经济回报的关键。其他行业的经验已经证明,大数据固然好,但如果不能对数据进行有效筛选和正确利用,最后只会赔了夫人又折兵。尤其银行是一个比较特殊且敏感的行业,在全局层面彻底进行所谓大数据革命是不实际的,正确的做法是从小的具体业务和关键节点入手,以能被银行现有管理架构和外部监管机制接受的方式,逐步将大数据纳入银行的经营体系中来。
举例来说,当前银行业普遍在为两件事头疼:留住客户、满足客户的期待。对于这两个难题,大数据机制下的情绪分析和行为预测可以发挥意想不到的作用。
分析客户情绪
传统的客户意见收集及调查方式往往以一个组别为单位,通过对于部分群体客户的调查和研究,银行可以得到客户方方面面的情况。随着时代的进步,这样的方式在获得客户金融消费的最新趋势、挖掘客户隐藏的需求等方面已不太管用。最为致命的一点是,这样的客户信息、数据收集方式往往耗时较长,花费更多,但最终得出的结果又往往无法应对客户实时产生的需求变化。
所谓情绪分析,是指收集客户在包括社交网络在内的网络平台上的言论和活动,不仅包括他自己的部分,还包括他最近关联到的其他好友,由此得到的数据,经过一套科学设计过的计算、分析系统,得出某个具体客户近期的情绪走向,为预测客户行动、帮助银行指定具体的应对措施提供帮助。
在这里,“情绪”并不简单代表客户的情感变化,还包括客户的态度立场、情感倾向等等。这在以往的调查分析工具中,是极难把握的东西,但在这个自媒体时代,这样的信息散布在网络上,极易获取、分析。而且抓取、分析这些数据的方法已经相当成熟,从宅在家里的技术男,到正经严肃的学院派,大家都在推出这样的工具。银行只需要选择一个比较稳定的技术供应商,并将结果实时反馈、整合到自己的系统中来,就能在第一时间确定客户对于银行的产品、服务、定价或政策调整的反应,并采取合适的方式应对。如果客户的反应对银行有利,银行可以及时介入,对客户的情绪加以引导,以实现更好的服务和销售;如果客户对银行表露出不太好的情感,银行也能及时发觉并积极处理,进一步提升客户的服务体验。
下面举出几个银行必须及时关注的客户表态例子:
? “XXX银行在小微业务上的确很好用,但缺乏合适的当天到账服务就太那啥了!”
?“XX银行的网上查阅账户余额功能的确设计得不错,但客户服务的一些细节真的有待改善。”
以普通人的角度,这不过是两句简单的客户意见表达而已。但在情绪分析工具的帮助下,通过对于“好用”、“缺乏”、“改善”等关键词汇的识别与统计,以及对于上下文意思的了解,就可以形成一张完整的客户情绪变化表,将更多的客户情绪变化汇集到一起,就可以形成一份颇具价值的报告(所谓舆情监控就是这类报告的简单形态)。通过这些报告,银行可以知道自己在客户心中真实的反馈,并知道客户最需要银行在哪些方面做出改变。也就是说,银行可以得知客户的“心愿单”,并将此纳入自己的产品、服务革新计划当中,逐一予以满足。
对于银行来说,客户情绪分析最有用的一点是帮助银行更有效率地回馈客户。我们都组织过各种客户回馈活动,但又不知究竟应当挑选哪些客户进行回馈、哪些客户经过我们的维护可以促成更多的交易——大部分时候,银行只是完成既定的任务,将礼品派送出去就完事,以为这样就能在激烈的竞争中留住自己的目标客户。而现在,银行可以在客户情绪分析工具的帮助下更有选择的进行类似的活动。例如,近期要做一个针对产品的活动,就以产品为关键词,对当前的客户情绪进行研判,得出主流客户群体对于我们产品的态度,再依照态度的不同来选择不同的活动策略和活动力度。这样不仅能帮银行节约成本、提高效率,最为重要的是,这也是维持现有客户忠诚度,并尽可能多地吸收目标客户的有效方式。
当然,批评者会说,目前虽然有大量的客户情绪分析工具,但这些工具的可行性与分析结果的真实性一直都存在疑问。已经有一些银行依照这些工具的帮助进行了一些实验,效果并未如想象中理想。那么,银行应当怎么应对这种尚处在完善过程当中的新兴事物呢?我们的态度很明确:虽然这还是一个有待完善的工具,但大数据的整体趋势是不容置疑的。当银行等到一切都齐备完善到不会出错时,其实就已经落后于时代的脚步了。要想成为行业的领军者,就必须承受创新可能带来的负面效应。
预测客户行为
比分析客户情绪更大的挑战是预测客户行为。关于大数据如何应用于预测客户行为最早最著名的例子,来自美国第二大超市塔吉特百货。明尼苏达州一家塔吉特门店曾被客户投诉,一位中年男子指控塔吉特将婴儿产品优惠券寄给他的女儿——一个高中生。但没多久他却来电道歉,因为女儿经他逼问后坦承自己真的怀孕了。塔吉特百货就是靠着分析用户所有的购物数据,然后通过相关关系分析得出事情的真实状况。
对于银行来说,正确地预计消费者的需求,并及时组织好可匹配的产品与服务响应客户的需求还是一件比较难完成的任务。这需要大量历史数据的储存与分析,还需要有应对各种行为可能的预测机制(不同的行为意味着不同的算法),才能实现塔吉特百货那样“料事如神”的效果。令人头疼的是,零售银行所需的数据关联性与零售商业的数据存在着一定的差异,因此需要针对银行产品和服务的特点进行重新设计。只要银行能解决这样的问题,并把分析的结果实时、具象的体现在前端营销人员的电脑、手机里,就能帮银行解决很多眼下头疼的问题。在全局层面上,这样的预测机制也能帮银行少走很多弯路,避免不必要的资源浪费。
银行可以根据客户以往的消费记录,尤其是与金融产品直接相关的消费记录,以及目前所持有的银行产品的使用情况建立数据收集模型,通过一定时间的数据收集和分析之后,便能为银行下一步的产品策划与营销提供翔实的数据参考。在此基础上,诸如交叉销售、深度挖潜、提升单个客户贡献度、保持客户忠诚度等等业绩或营销目标都能更轻松的完成。当你知道客户的情绪变化,还知道客户可能的购买需求,只要你能以合适的方式将客户所需要的东西及时递上,客户自然会乐意接受。
以合适的方式来发挥大数据的效用非常重要。大数据可能带来的一个负面效应就是客户隐私的被侵犯,前面提到的塔吉特百货就是一个例子。在这个事件之后,塔吉特百货调整了自己寄送优惠广告的方式:当发现某位客户可能怀孕之后,塔吉特百货还是会寄送一份包含孕妇所需产品的小册子到她手上,只不过通过视觉排版、其他品类产品交叉排列等等方式,在不引发客户那种“被窥视”的反感的前提下,实现了产品的精准推荐。最终,在大数据的帮助下,2002年到2010年间,塔吉特百货的销售额从440亿美元增长到了670亿美元。
值得一提的是,大数据应用还能帮助银行实现有效的风控。国外已经有一些金融机构利用大数据来帮助金融产品交易、信用卡消费等方面的风控。尤其是在信用卡、无抵押贷款等产品上,通过大数据建立的模型,银行能准确的知晓某个客户的生活和消费情况,从而选择是不是要发放卡片/贷款给他,或者要不要给他提升额度、延迟还款期。一旦某个客户出现异常行为,银行也能在最短的时间内知晓,并采取相应的措施防止风险案件的发生。
总之,虽然还不够完善,但大数据拥有无可限量的未来。银行需要赶紧加入到这个潮流中来,并尽早从战略层面对大数据加以倾斜,这样才能在竞争中占据有利位置,无论银行的对手是谁。