2.5D和3D封装技术还没“打完架”,3.5D又来了?

2.5D和3D封装技术还没“打完架”,3.5D又来了?
2024年10月10日 15:21 电子产品世界

随着半导体行业的快速发展,先进封装技术成为了提升芯片性能和功能密度的关键。近年来,作为2.5D和3D封装技术之间的一种结合方案,3.5D封装技术逐渐走向前台。

本文引用地址:

什么是3.5D封装技术

3.5D封装技术最简单的理解就是3D+2.5D,通过将逻辑芯片堆叠并将它们分别粘合到其他组件共享的基板上,创造了一种新的架构。能够缩短信号传输的距离,大幅提升处理速度,这对于人工智能和大数据应用尤为重要。

不过,既然有了全新的名称,必然要带有新的技术加持 —— 混合键和技术(Hybrid Bonding)。混合键合技术的应用为3.5D封装带来了新的可能性,是一种在相互堆叠的芯片之间获得更密集互连的方法。

混合键合技术加持的3D TSV的直接互连
混合键合技术加持的3D TSV的直接互连
混合键合技术加持的3D TSV的直接互连混合键合技术加持的3D TSV的直接互连

通过混合键合,可以在更小的空间内实现更多的连接,从而提高封装的密度和性能。下图是传统凸点和混合键合技术的结构比较:传统凸点间距是50微米,每平方毫米有大约400个连接;混合键和大约10微米的间距,可达到每平方毫米10000个连接。

传统凸点和混合键合技术的结构比较传统凸点和混合键合技术的结构比较

混合键合解决了另一个棘手的问题,即数千个微凸块之间的共面性,而制造传统键合产品很难以合理的产量满足这一要求。混合键合技术应用于3D TSV的直接互连,省却了凸点,其界面互连间距可小于10um甚至1um,其互连密度则可达到每平方毫米10000~1000000个点。这是传统的凸点互连远远无法达到的,因此,在高密度的3D互连中,凸点最终会消失。

另外,SRAM作为处理器缓存的首选,通过3.5D封装技术可以在不增加物理面积的情况下实现更多内存的集成。SRAM不一定必须与处理器的先进节点处于同一节点,这也有助于提高产量和可靠性。

在最近的三星代工活动中,该公司代工业务开发副总裁Taejoong Song展示了3.5D配置的路线图,将使用2nm芯片堆叠在4nm芯片上,2027年将使用1.4nm芯片堆叠在2nm芯片上。

三星的异构集成路线图三星的异构集成路线图

英特尔代工厂的方法在很多方面都很相似。英特尔高级副总裁兼代工服务总经理Kevin O'Buckley表示:“我们的3.5D技术是在带有硅桥的基板上实现的。这不是成本极高、产量低、多掩模版形状的硅,甚至不是RDL。我们以更具成本效益的方式使用薄硅片,通过硅桥实现芯片到芯片的连接,甚至是堆叠芯片到芯片的连接。因此,您可以获得相同的硅密度优势,以及该硅桥的相同SI(信号完整性)性能,而无需在整个硅桥下方放置巨大的单片中介层,这既成本高昂又限制了容量。它正在发挥作用。它正在实验室中运行。”

英特尔的3.5D模型英特尔的3.5D模型

3.5D封装技术的挑战

虽然当前的技术已经能够实现较为稳定的3.5D封装,但在大规模生产和应用中,仍需要进一步降低成本和提高良率,工艺的复杂性和制造成本是制约其大规模应用的主要因素。其次,3.5D封装的可靠性和长期稳定性也需要进一步验证,特别是在高温和高压环境下的应用场景中。

除此之外,散热可能是最难解决的问题:工作负载可能会有很大差异,从而产生动态热梯度并将热量困在意想不到的地方,从而缩短芯片的使用寿命和可靠性。

理解2.5D和3D封装技术

一直以来,提升芯片性能主要依靠先进制程的突破。但现在,人工智能对算力的需求,将芯片封装技术的重要性提升至前所未有的高度。为了提升AI芯片的集成度和性能,高级封装技术如2.5D/3D封装和Chiplet等得到了广泛应用。

根据研究机构的调研,到2028年,2.5D及3D封装将成为仅次于晶圆级封装的第二大先进封装形式。这一技术不仅能够提高芯片的性能和集成度,还能有效降低功耗,为AI和高性能计算等领域提供强有力的支持。

· 2.5D封装技术

2008年,赛灵思将其大型FPGA划分为四个良率更高的较小芯片,并将这些芯片连接到硅中介层,2.5D封装由此诞生。2.5D封装技术是一种介于传统2D封装和3D封装之间的过渡技术,通过在硅中介层(Silicon Interposer)上集成多个裸芯片(Bare Die),实现了芯片之间的高速互连和短距离通信。硅中介层通常采用硅通孔技术实现垂直互连,具有高密度、高性能的互连特性,可以大大提高系统的整体性能。

2.5D封装的整体结构2.5D封装的整体结构

· 3D封装技术

3D封装是指在不改变封装体尺寸的前提下,在同一个封装体内于垂直方向叠放两个以上芯片的封装技术,它起源于快闪存储器(NOR/NAND)及SDRAM的叠层封装。但是要注意的是,3D封装不一定要用到TSV技术,通过引线键合(Wire Bonding)的方式连接且在空间上进行芯片堆叠并封装都能成为3D封装。

3D封装的整体结构3D封装的整体结构

The Business Research Company近日发布了3D IC和2.5D IC封装市场研究报告,预计未来几年,3D IC和2.5D IC封装市场规模将快速增长:将从2023年的486亿美元增长到2024年的543.9亿美元,复合年增长率(CAGR)为 11.9%,到2028年,市场规模将达到816.7亿美元,CAGR为10.7%。预测期内的增长可归因于可穿戴和便携式设备的出现、能效需求的增长、高性能计算需求的上升、向片上系统设计的转变、半导体器件复杂性的增加以及物联网的普及。

另外,据市场分析机构Global Market Insights Inc.数据,2023年3D半导体封装市场价值94亿美元,预计2024年至2032年期间的CAGR将超过18%。

2.5D和3D封装技术的区别

2.5D可以看两块积木在二维尺度是无法拼接在一起的,需要一个中介放在两块积木之下,且可以同时对两块积木进行连接;3D就直接积木与积木垂直(其实也不一定)的堆叠在一起,而积木就是一个个芯片。2.5D封装是利用导电凸块或TSV将组件堆栈在中介层上,3D IC封装则将多层硅晶圆与采用TSV的组件连接在一起。

3D封装中逻辑裸晶堆栈在一起或与储存裸晶堆栈在一起,无需建构大型的系统单芯片。3D封装技术在垂直方向上实现了更高的集成度,而2.5D封装技术则通过硅中介层实现了水平方向上的高密度互连。

先进封装中的关键技术

引线键合(Wire Bonding):采用直接穿过有源电路的多层互连结构,同时通过采用3D架构,可以将芯片折叠到它自己的上面,减小了互连线长度。这样不仅会极大地提高电路性能,还会极大地降低电路的功耗。

硅通孔技术(Through Silicon Via,TSV):通过在硅片上打孔并填充导电材料实现了芯片之间的垂直电气连接,可以完成连通上下层晶圆或芯片的功能,在更小的面积上大幅提升芯片性能并增加芯片功能。这种连接方式具有低电阻、低电容和低电感的特点,可以显著提高信号传输的速度和稳定性。TSV用途大致分为三种:背面连接(应用于CIS等)、2.5D封装(TSV在硅中介层)、3D封装(TSV位于有源晶粒中,用于实现芯片堆叠)。

中介层(Interposers):中介层是封装中多芯片裸晶或电路板传递电信号的管道,是插口或接头之间的电接口,可以将信号传播更远,也可以连接到板子上的其他插口。中介层可以由硅和有机材料制成,充当多颗裸晶和电路板之间的桥梁。硅中介层是一种经过验证的技术,具有较高的细间距I/O密度和TSV形成能力,在2.5D和3D IC芯片封装中扮演着关键角色。

2D封装加上Interposer后就变成了2.5D,那么3D封装加上Interposer自然就变成了3.5D,既合情合理,又符合了通用的命名法则。

重分布层:重分布层包含铜连接线或走线,用于实现封装各个部分之间的电气连接。它是金属或高分子介电材料层,裸晶可以堆栈在封装中,从而缩小大芯片组的I/O间距。重分布层已成为2.5D和3D封装解决方案中不可或缺的一部分,使其上的芯片可以利用中介层相互进行通讯。

高带宽内存(High Bandwidth Memory,HBM):是一种用于3D堆叠同步动态随机存取内存的高速计算机内存接口,最初由三星、AMD和SK Hynix开发,是将很多个DDR芯片堆叠在一起后和GPU封装在一起,实现大容量。在堆叠内,芯片通过TSV和微凸块垂直互连。

新浪科技公众号
新浪科技公众号

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)

创事记

科学探索

科学大家

苹果汇

众测

专题

官方微博

新浪科技 新浪数码 新浪手机 科学探索 苹果汇 新浪众测

公众号

新浪科技

新浪科技为你带来最新鲜的科技资讯

苹果汇

苹果汇为你带来最新鲜的苹果产品新闻

新浪众测

新酷产品第一时间免费试玩

新浪探索

提供最新的科学家新闻,精彩的震撼图片